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Abstract 

SSDI application rates rose from the early 1990s until a sharp decline began in 2010. Various 
factors, such as improved economic conditions, aging Baby Boomers, better workforce sup-
port for disabled individuals, changes in claim processing, and lack of program awareness, 
have been suggested to explain this trend. This study examines the relationship between 

SSDI applications and the spread of automation technologies. Automation could infuence 

SSDI applications by displacing workers and reducing wages or by making workplaces safer 
and less injury-prone, thus afecting the number of disability claims. Using confdential data 

on SSDI applications at the commuting-zone level, we estimate the efect of automation 

exposure on application rates across age and gender groups from 2005–2019. Our fndings 
suggest that SSDI application rates for the 18–64 age group decline with greater automa-
tion exposure. This efect is more pronounced in the 35–54 and 55–64 age groups. While 

automation exposure has minimal impact on younger workers (18–34), the 35–54 age group 

experiences the largest negative efect, with smaller yet statistically signifcant efects for 
the 55–64 age group. These patterns hold across broadly (automation-intensive employment 
shares) and narrowly (industrial robots) defned measures of automation exposure. 

Key words: Social Security Disability Insurance (SSDI), disability, industrial robots, au-
tomation 

JEL Categories: J14, J23, J24, O33 
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1 Introduction 

SSDI application rates generally followed an upward trend from the early 1990s until an 

unexpected and sharp reversal began in 2010.1 Various hypotheses have been put forward 

to explain the abrupt change in applications, including improved economic conditions, the 

transition of Baby Boomers out of disability-prone age brackets, enhanced support for dis-
abled individuals in the workforce, modifcations in claim processing, and a lack of program 

awareness among eligible individuals.2 This study explores the relationship between SSDI 
applications and the proliferation of robotics and other automation technologies. 

Recent research shows that automation accounts for most of the change in the US 

wage structure since 1980 (Acemoglu and Restrepo, 2022b, 2024; Acemoglu et al., 2024). 
Automation could impact disability uptake by displacing workers and lowering wages or 
reducing injury-prone tasks (e.g., see Gihleb et al., 2022). The predicted impact on SSDI 
applications is therefore ambiguous, as automation may create slack conditions in the labor 
market, increasing uptake, or create safer work conditions, decreasing uptake. This paper 
presents estimates on the relationship between exposure to automation technologies and 

SSDI application rates. 

Using confdential data on SSDI applications measured at the commuting-zone level, 
we estimate the efect of various measures of “automation” exposure on changes in per-capita 

SSDI applications by age group (18–64, 18–34, 35–54, and 55–64) and age group × sex. The 

extent of automation in the economy is measured via employment shares, which follows 
Autor and Dorn (2013), and industrial robot exposure, which is based on the measures used 

in Gihleb et al. (2022) and Acemoglu and Restrepo (2020). Long- and stacked-diferences 
specifcations are estimated using the The 2005–2019 to estimate the efects of automation 

exposure on changes in the SSDI application-to-population ratio. 

The regression equation of interest is estimable by ordinary least squares (OLS), but 
the adoption of automation technologies can be infuenced by other factors that afect frms’ 
demands for labor within a commuting zone. If these factors were observable, we could 

account for them. However, many of these factors are likely unobserved and, as a result, 
an alternative estimation strategy is needed. To circumvent these empirical identifcation 

issues, the study employs an instrumental variables estimation strategy that follows Autor 
and Dorn (2013) for the employment-share measures and Gihleb et al. (2022) and Acemoglu 

and Restrepo (2020) for the measure of industrial robot exposure. For the former, we develop 

1See https://www.ssa.gov/oact/STATS/table6c7.html. 
2e.g., see https://www.ssa.gov/policy/docs/briefing-papers/bp2019-01.html. 

https://www.ssa.gov/policy/docs/briefing-papers/bp2019-01.html
https://www.ssa.gov/oact/STATS/table6c7.html
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a Bartik-type instrument from the 1990 routine employment share to predict automation-
related employment shares in 2005.3 For the latter, we leverage the fact that European 

countries led the US in terms of robot adoption and, therefore, industry-specifc adoptions 
across France, Denmark, Finland, Italy, Germany, Norway, Spain, Sweden, and the United 

Kingdom are used as an instrument to predict US industrial robot exposure in 2005. For 
both the automation-related employment-share measures and the robot-exposure measure, 
the instruments are relevant in the frst stage and contend that they afect SSDI outcomes 
via their impact on the suspected endogenous variable (i.e., the automation measures). 

Application rates for the 18- to 64-year-olds decrease with greater automation expo-
sure. These efects are not statistically signifcant with OLS but become signifcant with 

2SLS. The estimates for 18–64 year-olds, however, mask heterogeneity in the efects of au-
tomation exposure across the 18–34, 35–54, and 55–64 age groups. The 35–54 age group 

shows the largest negative efect, while the 55–64 age group also shows signifcant but smaller 
negative efects. 

The study’s fndings for the link between industrial robot exposure and SSDI applica-
tion rates align with those from the analysis using the automation-related employment-share 

measures. One diference in the estimates of industrial robot exposure’s impact and that 
of the employment-share measures is that the negative efects are statistically signifcant, 
regardless of whether OLS or 2SLS is used to estimate the parameters of interest. The 

similarities include null efects for the 18–34 age group and a negative and statistically sig-
nifcant efect for the 35–54 and 55–64 age groups. Moreover, industrial robot exposure has 
the largest efect on the 35–54 age group, which is also consistent with the fndings for the 

employment-share measures. 

2 Literature Review 

2.1 Disability Applications 

Since the 1970s, the SSDI program has undergone dramatic changes, mainly infuenced by 

shifts in benefciary demographics and a labor market with increasing female participation 

(Liebman, 2015). As baby boomers began to reach ages with higher SSDI risk, concerns 
arose about the program’s solvency and policies (Autor and Duggan, 2006). 

Maestas et al. (2021) fnd that the Great Recession led to nearly one million additional 
SSDI applications, of which 41.8 percent were awarded benefts, resulting in over 400,000 

3See, for example, Goldsmith-Pinkham et al. (2020); Borusyak et al. (2022) 
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new benefciaries who constituted 8.9 percent of all new benefciaries during the recession. 
However, an unexpected large decrease in SSDI claiming began as the deleterious employment 
efects of the Great Recession began to wane. As of 2022, approximately 9 million individuals 
received $12.6 billion in SSDI payments and the program is expected to remain solvent 
through the long-run 75-year projection period (US Social Security Administration, 2023). 

2.2 Automation and Tasks 

2.2.1 General Automation Technologies 

The increasing penetration of robots and technology in the labor market has raised con-
cerns about the future of employment and wages (Johnson and Acemoglu, 2023). Acemoglu 

and Restrepo (2022b) reveal that automation-driven task displacement accounts for 50–70 

percent of changes in the US wage structure over the past four decades, particularly af-
fecting routine-task workers. Their study also shows that automation signifcantly reshapes 
wage structures, increasing the college premium while reducing real wages for less educated 

workers. 

Autor and Dorn (2013) exploit diferential exposure to routine tasks across local 
labor markets to identify the efects of automation technology adoption on labor-market 
outcomes. By combining past values of a commuting-zone-industry employment share with 

industry-level routine occupational share, the authors create a shift-share-type instrumental 
variable (e.g., see Goldsmith-Pinkham et al., 2020). They fnd that automation (particularly 

computers) increased wages for high-skilled workers and substituted for lower-skill workers in 

routine tasks. This also increased demand for service-sector jobs and reallocated lower-skilled 

labor to those jobs. 

Bratsberg et al. (2022) study the Norwegian labor market over approximately the 

same sample period as this study. Individuals in occupations with higher routine task inten-
sity (RTI) scores in 2003 were signifcantly less likely to remain employed and more likely 

to receive a disability pension or die by 2019. The study found that a standard-deviation 

increase in RTI score was associated with a 6.7 percent higher mortality rate for men and a 

5.5 percent higher rate for women. 

Acemoglu and Restrepo (2022a) show that aging populations promote frm demand 

for automation technologies, particularly as older workers are often less suited for physically 

demanding tasks. This scenario leads to a capital substitution efect, where labor-saving 

automation technologies become more prevalent because of the relative scarcity and higher 
wage demands of younger workers. Identifying an efect of automation on disability claiming 
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requires taking account of these market forces, as aging populations will have both higher 
levels of disability and automation. 

The literature on the health efects of automation risk has mixed results from labor 
markets around the world. Lordan and Stringer (2022) fnd small, negative efects of automa-
tion risk on the mental health of Australian workers. Blasco et al. (2024) also fnd negative 

efects on mental health for French workers, but the efect sizes are larger than those re-
ported in Lordan and Stringer (2022). In Blasco et al. (2024), anxiety over the labor market 
is the primary mechanism through which the efect operates. Cheng et al. (2021) study a 

nationwide survey from Taiwan and fnd that people employed in jobs with a high likelihood 

of automation tended to experience lower levels of job control, greater job insecurity, and a 

higher prevalence of work-related injuries and illnesses. In contrast, those in positions with a 

low probability of automation faced greater psychological and physical demands, along with 

a higher incidence of burnout. 

2.2.2 Industrial Robots 

A growing body of literature examines the efects of industrial robot exposure on employ-
ment, wages, and worker health across diferent regions and market sectors. Acemoglu and 

Restrepo (2020) analyze the efect of the increase in industrial robot usage on US local 
labor markets. They show that robots may reduce employment and wages, and that the 

local-labor-market efects of robots can be estimated by regressing the changes in employ-
ment and wages on robot exposure. Dauth et al. (2021) estimate the efect of industrial 
robots on employment, wages, and the composition of jobs in German labor markets. They 

fnd that the adoption of industrial robots had no efect on total employment in local labor 
markets specializing in industries with high robot usage. Robot adoption led to job losses 
in manufacturing that were ofset by gains in the business service sector. Acemoglu et al. 
(2020) study the frm-level implications of robot adoption in France and fnd that adopters 
experienced signifcant declines in labor shares and the share of production workers in em-
ployment and increases in value added and productivity and overall employment. However, 
the employment expansion comes at the expense of competitors, leading to a net negative 

efect on employment. 

The literature on the health efects associated with industrial robot penetration is less 
mixed than for automation shares and automation risk. Gunadi and Ryu (2021) investigate 

the health impacts of increased industrial robot use in US cities. They fnd that a 10 percent 
increase in robots per 1,000 workers corresponds to a 10 percent decrease in poor health, 
work disability, and job quitting for health reasons among this group. This improvement 
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is partly attributed to a shift away from physically demanding tasks. Gihleb et al. (2022) 
fnd that an increase of one standard deviation in industrial robot use reduces work-related 

injuries by approximately 1.2 per 100 full-time workers in the US and Germany. They report 
an annual injury cost reduction of $1.69 billion (2007 dollars) from 2005-2011, mainly due 

to decreased injury rates in manufacturing. However, US mortality and mental health data, 
shows a countervailing efect, as industrial robot penetration into a labor market signifcantly 

escalates substance abuse-related deaths and negatively impacts mental health. O’Brien 

et al. (2022) also found that robot penetration increases the rate of overdose deaths in the 

United States. However, Gihleb et al. (2022) fnd no consequential efects on suicide rates, 
suggesting that labor-market pressures and anxiety, exacerbated by robot penetration, are 

primarily responsible for the observed impacts. 

3 Data 

3.1 SSDI Applications 

The dependent variables used in this study are population-weighted SSDI application counts 
across commuting zones and years by (a) age group (18–64, 18–34, 35–54, and 55–64) and 

(b) age group × sex. These data were provided by the SSA and are confdential.4 In some 

instances, application counts from particular CZs are suppressed because of an insufcient 
number of applications in these locations. The missing information varies by (a) age group 

and (b) age group × sex. When sex is ignored in the application counts, the data cover 
86 percent of CZs (643 out of 722) for the 18–64 age group;5 87 percent for the 18–34 age 

group, 95 percent for the 35–54, and 94 percent for the 55–64 age group. When examining 

application rates by sex and age group, the shares of CZs that are covered fall to 77, 78, 
89, and 86 percent for the 18–64, 18–34, 35–54, and 55–64 age groups, respectively.6 The 

CZs with missing SSDI application data tend to be located in the Mountain West and West 
North Central Midwest, and these locations have relatively small populations. 

4All results involving the data provided by SSA must be approved by the SSA’s Disclosure Review Board 
(DRB) for external presentation. The estimates reported herein have obtained the DRB’s approval. 

5Using 1990 commuting zones, the entire US has 741 commuting zones. Our analysis is restricted to the 
continental US, which results in the exclusion of 19 commuting zones located in Alaska and Hawaii. 

6The 18- to 64-year-old outcome is created by summing the application counts for the 18–34, 35–54, and 
55–64 age groups (and then dividing by the commuting zone’s population). The SSA redacted data for 
commuting zones with applications below the threshold count required for external presentation, and the 
redactions vary by age group as well as age group × sex. Thus, when computing the measure for 18- to 
64-year olds, the numbers of observations are less than those for the subgroups, as a commuting zone with 
a missing value for only one of the three age groups results in a missing value for the application rate for all 
age groups combined. The extent of redaction is greater for the 18–34 age group than the 35–54 and 55–64 
age groups. 
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To adjust the raw application counts for population size, we use total population 

counts from the US Census’s intercensal tables, which provide county-year population statis-
tics by age and sex. Using the county-year population counts, the populations of coun-
ties within a CZ were then summed.7 The outcome measure, termed the application-to-
population ratio, is calculated as follows: 

Appsa,s,c,t
Apps ∗ = × 100. (1)a,s,c,t P opc,t 

The terms a, s, c, and t index age groups, sex, commuting zones, and years, respectively. 
The variable Apps∗ represents the SSDI application-to-population ratio for age group aa,s,c,t 

and sex s in commuting zone cd at year t; Appsa,s,c,t is the raw count of SSDI applications for 
age group a and sex s in commuting zone c at year t; and P opc,t is the population count in 

commuting zone cd at year t. In our econometric analysis, we estimate separate regressions 
for the 18–64, 18–34, 35–54, and 55–64 age groups with and without taking sex into account. 

Table 2 reports the averages (column 1) and standard deviations (column 2) of the 

SSDI application-to-population ratios for each age grouping. In addition, we decompose 

the standard deviation for each outcome variable into “within” and “between” components 
(column 3 and 4). The ratios for males and females combined are presented in Panel A, and 

those for males and females separately are shown in Panels B and C, respectively. Regardless 
of sex, the SSDI application-to-population ratios vary considerably across the age groups. 
For example, the ratio for the 35–54 age group is almost three times larger than that for the 

18–34 age group and 1.5 times than that for the 55–64 age group. Moreover, the variation 

between commuting zones is greater than the within-commuting-zone-variation by a factor 
of 1.6 to 2.4. These patterns hold for males and females (see columns 3 and 4). 

In Figure 2, we present the 2005 geographic variation (across the continental US) in 

the SSDI application-to-population ratio (Panel A) along with its change between 2005 and 

2019 (Panel B) for the 18–64 age group. The application-to-population ratios tend to be 

highest in the south, but commuting zones in southern states, such as North Carolina, West 
Virginia, Tennessee, South Carolina, Arkansas, and Kentucky, experienced relatively larger 
reductions than commuting zones located in the Mountain West, West North Central, and 

Middle Atlantic regions. In total, about 75 percent of commuting zones across the United 

States experienced reductions in the application-to-population ratios. 

Figures 3, 4, and 5 present maps analogous to those shown in Figure 2 separately 

7The county-year population statistics were downloaded from the US Census’s intercensal tables (2000– 
2009) and Vintage 2020 Population estimates (2010–2019). 
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for each age group: 18–34, 35–54, and 55–64. Across the three fgures, there is a simi-
lar concentration in 2005 of higher application-to-population ratios in the southern states. 
However, the evolution of the application-to-population ratios between 2005 and 2019 varies 
considerably across the three age groups. For the 35–54 age group, the reduction in the 

ratio spans the vast majority of the US, with only around 3 percent of commuting zones 
experiencing upticks in their ratios. The share of commuting zones experiencing upticks in 

their application-to-population ratios is 54 percent for the 18–34 age group and 72 percent 
for the 55–64 age group. The patterns in Figures 3 and 5 indicate that it is the 35–54 age 

group (i.e., Figure 4) driving the patterns observed in Figure 2. 

3.2 Measuring Automation 

3.2.1 Automation-Related Employment Shares 

We use three diferent employment-share variables to measure the extent of automation in 

the labor market. The measures are based on data from the Occupational Information Net-
work (O*NET) and the American Community Survey (ACS). The computation of the three 

employment shares follow Autor and Dorn (2013), who connect the routine employment 
share to the hollowing out of middle-skill occupations in the US. Their measure identifes oc-
cupations in the top 1/3 of the 1950 routine task intensity distribution, and then employment 
in routine-intensive occupations as well as employment in general are totaled by commuting 

zone and year. We perform the same calculations but use variables from O*NET instead of 
the Department of Transportation (DOT) and rely on the 1990 task-intensity distributions 
instead of those from 1950. 

The three employment-share variables are based on the routine task intensity mea-
sure from Deming (2017), which has two components. The frst relates to the importance 

of performing repetitive tasks, and the second captures the extent to which a job is auto-
mated. The frst employment share measure uses the composite measure, whereas the second 

and third employment-share variables use the individual components of the composite mea-
sure (i.e., repetition and automation). The three measures are referred to as the routine-, 
repetition-, and automation-intensive employment shares. 

To perform the calculations, we frst follow the approach commonly used in the lit-
erature and convert the measures based on the O*NET data, which are ordinal (typically 

1-5 or 1-7 scales), to 0-10 scales (e.g., see Deming, 2017). This allows for identifying occu-
pations in the top 1/3 of the variable’s distribution. The occupation-identifer is then linked 

to the 2005-2019 ACSs via the 2018 Standard Occupation Classifcation (SOC) codes. For 
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the occupations identifed as being intensive in routine, repetition, and automation tasks, 
the number of workers employed in these occupations is counted as well as the number of 
workers employed overall in each CZ-year. The ratio of these employment counts yields the 

three employment-share variables used in our regression analysis. Formally, the employment 
shares are computed as follows: ! !−1J JX � � X 

Empshc,t = · 1 T askIntj,2005 > TaskIntp66 (2)Empc,j,t 2005 Empc,j,t 
j=1 j=1 

The terms c, j, and t index commuting zones, occupations, and time periods, respec-
tively. The variable Empshcs,t measures the share of workers employed in occupations in 

the top 1/3 of the automation measure’s task-intensity distribution in commuting zone cs 

in year t; Empcs,j,t is employment in occupation j in commuting zone cs at time t; and 

1 · [T askIntj,2005 > TaskIntp66 ] is an indicator function that identifes occupations in the2005 

top 1/3 of the task intensity distribution in 2005. The three variables that comprise Empshcs,t 

include the routine-intensive employment share (RSHcs,t), the repetition-intensive employ-
ment share (RT SHcs,t), and the automation-intensive employment share (ASHcs,t). 8 

Table 1 presents the top 10 occupations ranked for each of the automation-related 

employment shares. In some cases, there is overlap across the measures in terms of rankings. 
For example, the bookkeeping, accounting, and auditing clerks occupations are ranked #1, 
#1, and #8, respectively, across the routine, repetition, and automation intensity measures. 
However, travel agent and insurance claims occupations tend to be “automation intensive” 
and less “repetition intensive”. By contrast, other occupations tend to be more “repetition 

intensive” than “automation intensive”, such as tellers, pharmacists, and tax preparers. 

In Figure 6, we present the initial routine-, repetition-, and automation-intensive 

employment shares across commuting zones for the year 2005 (Panels A, C, and E) as well 
as the change in each measure between 2005 and 2010 (Panels B, D, and F). In terms 
of the initial geographic distribution, no clear pattern emerges, as the heat map reveals 
both relatively high and relatively low employment shares in the same geographic regions. 

8The computation of the employment shares requires two separate aggregations. The frst is to the PUMA-
year level, and the second is from the PUMA-year to the CZ-year level. Frequency weighting is applied in 
the frst aggregation using the perwt variable from Ruggles et al. (2023). For the second aggregation, 
we incorporate the PUMA-commuting zone crosswalk from Autor and Dorn (2013), and sum the number 
of workers employed overall as well as those in occupations intensive in routine, repetitive, and general 
automation tasks across PUMAs within a CZ-year. Because there is uncertainty regarding the geographic 
location of survey respondents, we use the allocation factors from Autor and Dorn (2013), which are applied 
as importance weights in the aggregation from the PUMA-year to the CZ-year level. 
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The changes in these variables, however, vary considerably between 2005 and 2010, as the 

automation-intensive employment share becomes much more pervasive across commuting 

zones than the routine- and repetition-intensive employment shares. Similar to the initial 
geographic distributions, there is more of a pattern than the initial distribution, as Heartland 

disproportionately experiences increases between 2005 and 2010 (Panels B and D). For the 

automation-intensive employment share (Panel F), its increase is widespread, afecting each 

region across the US. 

3.2.2 Industrial Robot Exposure 

The International Federation of Robotics (IFR) has collected data on industrial robot usage 

across countries and industries since the early to mid-1990s. The IFR provides industry-
year information on robot usage for various European countries dating back to its inception, 
but the inclusion of North America began in 2004. The IFR combined robot usage in the 

US, Canada, and Mexico into a single category from 2004 to 2010 before reporting separate 

statistics for each country beginning in 2010. Because our study period uses data reported 

before and after the reporting change, we use the North American statistics for the 2004– 

2010 period and then those for the United States thereafter. For the 2004–2010 period, the 

US accounts for over 90 percent of the North American market, making the use of North 

American robot usage a viable proxy (e.g., see Acemoglu and Restrepo, 2020). Measurement 
error is then inherent in the robot exposure measure used in our regression analysis, which 

results in attenuation bias. As such, an estimation strategy is needed to remove bias resulting 

from mismeasurement of the key explanatory variable. We return to this discussion in Section 

4.3. 

The IFR provides information on robot usage for nonmanufacturing industries (agri-
culture, forestry and fshing, mining, utilities, construction, education, research and devel-
opment, and services) as well as disaggregated industries within the manufacturing sector 
(food and beverage, textiles, wood and furniture, paper and printing, plastics and chemicals, 
minerals, basic metals, metal products, industrial machinery, electronics, automotive, ship-
building and aerospace, and “other” manufacturing). In total, there are 19 industries in the 

IFR classifcation. 

The analysis includes two measures of industrial robot exposure. The frst is from 

Gihleb et al. (2022) and the second follows Acemoglu and Restrepo (2020). The measure 

from Gihleb et al. (2022) requires two data sources: the robot usage data from IFR and 

industry-commuting employment statistics from the 1990 Census. Acemoglu and Restrepo 

(2020) rely on the same data sources but also incorporate an industry-level output growth 
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measure from the EU KLEMS and the world supply of industrial robots from the IFR. The 

measure from Gihleb et al. (2022) is defned as follows: 

IX Mi,t
RobotExpGGSW = . (3)c,t li,c,1990 

Ei,1990i=1 

The GGSW superscript indicates that the measure is from Gihleb et al. (2022). The variable 

Mi,t is the operation stock of autonomous robots in industry i in year t, and Ei,1990 is 
employment in industry i in 1990. The exposure measure is created by projecting the robots 
per worker to commuting zones via multiplication by the 1990 share of workers employed in 

industry i (i.e., li,cd,1990). 

The second measure, which is from Acemoglu and Restrepo (2020), is defned as 
follows: 

IX 
RobotExpAR 

c,(t0,t1) = li,c,1990 · AP Ri,(t0,t1), (4) 
i=1 

in which 

MwMi,t1 − Mi,t0 i,t0AP Ri,(t0,t1) = − gi,(t0,t1) . (5)
Ei,1990 Ei,1990 

The AR superscript indicates that the measure is from Acemoglu and Restrepo (2020). The 

variable AP Ri,(t0,t1) represents the adjusted robot-penetration ratio for industry i between 

time periods t0 and t1, which is projected to commuting zones via multiplication by the 

share of workers employed in industry i located in commuting zone c in 1990 (i.e., li,c,1990). 
In equation 5, the frst term is the change in the operational stock of autonomous industrial 
robots in commuting zone c between time periods t0 and t1 relative to employment for 
industry i in 1990, and the second term is the growth rate of output for industry i between 

time periods t0 and t1 multiplied by the global stock of robots, Mi,t
w 

0 
, for industry i at time 

t0 relative to employment for industry i in 1990. 

In Figure 7, we present the initial 2005 geographic distribution of robots per 1,000 

workers (Panel A) and its changes between 2005 and 2010 (Panel B). Initially, robot usage 

is concentrated in the upper Midwest, but the usage in industrial productions expands in 

all areas. The expansion between 2005 and 2010 is greatest in the upper Midwest and 

surrounding areas. 
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4 Econometric Methodology 

Our empirical strategy relies on both ordinary OLS and 2SLS estimation to compute the 

parameters of interest. In what follows, we outline our empirical approach for studying the 

relationship between the employment-share variables and SSDI applications (Section 4.2) as 
well as our strategy for empirically examining the link between exposure to industrial robots 
and SSDI applications (Section 4.3). 

4.1 Dependent Variables 

We transform SSDI outcomes presented in Table 2 into “long” or “stacked” diferences for 
the purposes of our econometric analysis, which are based on diferences in Apps∗ 

a,s,c,(t0,t1) 

between a starting (t0) and ending (t1) period. We compute the following separately for each 

age-sex group: 

Apps ∗ = Apps ∗ − Apps ∗ . (6)c,(t0,t1) c,t1 c,t0 

The starting and ending periods for our long and stacked diferences specifcations vary 

across the automation measures. When examining the employment-share measures and 

the robot-exposure measure from Gihleb et al. (2022), 2005 and 2019 are the starting and 

ending periods, respectively. For the stacked-diferences specifcations, there are two starting 

(s1 and s2) and ending (e1 and e2) periods. In our primary specifcation, ts 
0 
1 = 2005 and 

s2 e1 e2t = 2010 are the two starting periods and t = 2010 and t = 2019 are the two ending0 1 1 

periods. The application of Acemoglu and Restrepo (2020)’s measure relies on 2004 and 

2016 as the starting and ending years, respectively, for the long-diferences specifcations. 
For the stacked-diferences specifcations, the starting and ending years of the frst “stack” 
are 2004 and 2007, respectively, and the starting and ending years of the second “stack” are 

2013 and 2016, respectively.9 

4.2 Automation-Related Employment Shares 

The structural regression equation for the long-diferences specifcations is 
9Our fndings are insensitive to starting the analysis in 2004 versus 2005. Moreover, our fndings are 

qualitatively robust to diferent starting and ending years across the two stacks. In the specifcation we 
present in this report, we use the early and late parts of the sample. The use of 2004-2007 and 2013-2016 
also removes the infuence of the Great Recession. We note that our results are even stronger if we examine, 
for example, 2004-2010 and 2010-2016 as the two stacked diferences. 
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′ 
Appsc 

∗ 
s,(t0,t1) = α0 + α1Empshcs,t0 + Xcs,t−1 

Λ + ϕs + ϵcs,(t0,t1). (7) 

The variable Apps∗ represents the dependent variables defned in equations (6) for cs,(t0,t1) 

commuting zone cs (s indexes the state in which the commuting zone is located) between 

a starting period, t0, and an ending period, t1. The employment-share variables, which are 

defned in equation (2), are represented by the variable Empshcs,t0 , which is for commuting 

zone cs at the starting period, t0. Separate models are estimated for the three employment-
share variables: the routine-intensive employment share (RSHcs,t0 ), the repetition-intensive 

employment share (RT SHcs,t0 ), and the automation-intensive employment share (ASHcs,t0 ). 

The vector of control variables, Xcs,t−1 , is from Autor and Dorn (2013), whose study 

includes controls for the college-to-noncollege population, the ratio of immigrants to the 

noncollege population, the share of workers employed in manufacturing, the unemployment 
rate, the share of the population that is female and employed, the share of the population 

65 or older, and the share of noncollege workers workers earning a real wage below the 

minimum wage that will prevail over the next decade (2000-2010). In addition, we include 

two additional control variables: the “China Shock” from Autor et al. (2013) and an SSDI 
processing efciency variable from Kearney et al. (2021). Each of the variables in Xcs,t−1 is 
measured for commuting zone cs in the year 2000, except the “China Shock” variable and 

the SSDI processing variable. The variable capturing rising import competition from China 

is the change in Chinese import exposure between 1990 and 2000, and the SSDI processing 

variable is measured in 2003 (the frst year it is available). The inclusion of ϕs, which is a 

set of state dummy variables, means that the estimate for the parameter of interest, α1, is 
identifed based on temporal variation within states and across CZs. The error term, ϵcs,(t0,t1), 
captures predictors of Apps∗ not held constant. cs,(t0,t1) 

When estimating the stacked-diferences specifcations, equation (7) is altered as fol-
lows: 

′ 
Apps ∗ 

cs,(t 
si ,t 

ei ) = β0 + β1Empshcs,t 
si + β2D(t 

si ,t 
ei ) + X 

cs,t 
si Θ+ ϕs + ϵ cs,(t si ,t 

ei ). (8)
0 0 1 0 10 1 −1 

Equation (8) adds new superscripts to the time indices, t0 and t1, as well as an additional 
right-hand-side variable, D(t ,t ). The superscripts si and ei index the diferent starting and si ei 

0 1 

siending years used in the stacked-diferences specifcations. The inclusion of D(t ,t 
ei ) accounts 

0 1 

for diferences in the application-to-population ratio across the diference periods. Thus, the 

stacked-diferences estimates are based on within-period variation instead of variation over 
the entire time horizon, as is the case in the long-diferences specifcations. 
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We include two stacked diferences, 2005–2010 and 2010–2019, in our empirical spec-
ifcations. In efect, a panel of commuting zones with two time periods (one for each “stack”) 
is formed for the dependent variables. Thus, each commuting zone has two observations. 
The frst is for the 2005-2010 period and the second is for the 2010–2019 period. The variable 

Empshcs,t2005 is assigned to the frst period (2005–2010) and Empshcs,t2010 is assigned to the 
0 0 

second period (2010–2019). The variables in X 
′ are the same as those in equation (7), sics,t−1 

except the 1990 version of the control variables are linked to the frst period (2005–2010) 
and the 2000 version of the control variables are linked to the second period (2010–2019). 
For the “China Shock,” we use the change between two diferent points in time: the change 

in Chinese import penetration from 1990–2000 is linked to the 2005–2010 diference, and the 

analogous change between 2000 and 2007 is linked to the 2010–2019 diference.10 The 2003 

values for the SSDI processing time control variable are linked to the 2005–2010 diference 

period, and the 2008 values are linked to the 2010–2019 diference period. 

When equations (7) and (8) are estimated via OLS, α̂1 and β̂  
1 have causal interpre-

tations if the following are true: (i) the automation proxies and population-adjusted SSDI 
applications are not jointly determined; (ii) after conditioning on the full set of control 
variables, the automation measures are uncorrelated with factors in the error term that also 

afect SSDI outcomes; and (iii) the automation-related variables are measured without error. 
Simultaneity bias is unlikely given that automation technologies generally afect economic 

outcomes with a delay. However, it is more likely that unmeasured variables in the error term 

or measurement error could bias our OLS estimates. Given these concerns, an alternative 

estimation strategy that circumvent these problems is needed. 

We employ an instrumental variables (IV) estimation strategy to measure the causal 
efect of interest. For the three automation-related employment-share variables, we use an 

already-established instrument from Autor and Dorn (2013), who examine the efects of 
changes in the routine employment share on changes in service-sector employment via OLS 

and IV estimation. The instrument uses historical diferences in industrial composition across 
commuting zones as a source of plausibly exogenous information with which to identify the 

causal efect of interest. We use the same instrument for Empshcs,t0 but make one change. 
The task-intensity distribution used in our cases is from 1990, whereas Autor and Dorn 

(2013) use the 1950 distribution.11 The instrument has two components, both measured 

10The data for Chinese import penetration into US commuting zones are from the replication package 
associated with Autor et al. (2013), which is available at the following link: https://www.openicpsr.org/ 
openicpsr/project/112670/version/V1/view. 

11Our use of 1990 instead of 1950 is due to the time periods of our study relative to Autor and Dorn 
(2013). Their study covers a long time span, 1950-2005. Our sample period spans 2005 through 2019. 

https://www.openicpsr.org
https://distribution.11
https://difference.10
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15 years prior to the start of our sample period. The frst is the industrial composition of 
commuting zones in 1990, and the second is the national structure of occupations across 
industries in 1990. The product of these separate components forms the instrument: 

IX 
^RSHcs,1990 = Ei,cs,1990 × Ri,−cs,1990. (9) 

i=1 

^The variable RSHcs,1990 is the routine employment share in commuting zone c in 1990, which 

is the instrument for Empshcs,t0 ; Ei,cs,1990 is the employment share of industry i in commuting 

zone cs in 1990; and Ri,−cs,1990 is the routine occupation share among workers in industry i 

across all commuting zones except commuting zone cs in 1990. When estimating the long-
^diferences specifcations, RSHcs,1990 enters the frst-stage regression equation as defned in 

^ si eiequation 9, but RSHcs,1990 and its interaction with D(t0 ,t1 ) 
comprise the instruments in the 

frst-stage regression equation when estimating the stacked-diferences specifcations. 

In the context of Autor and Dorn (2013), using equation (9) as instrument allows 
them to identify the quasi-permanent component of the routine employment share’s impact 
on diferent outcomes, as the instrument would afect the long-run component but likely have 

no relationship with short-term fuctuations in outcomes. The same logic applies to our case. 
One would expect the routine employment share across occupations and industries in 1990 

to be a powerful predictor of the routine-, repetition-, and automation-intensive employment 
shares in 2005. Indeed, this is shown to be the case in Section 5.1. 

4.3 Industrial Robot Exposure 

To estimate the relationship between industrial robot exposure and the change in the SSDI 
application-to-population ratio, both OLS and IV estimation are used. The structural re-
gression equation for the long-diferences specifcations is 

Apps ∗ = γ0 + γ1RobotExpcd,t0 + X 
′ 

Ψ+ ϕd + ϵcd,(t0,t1). (10)cd,(t0,t1) cd,t−1 

The subscript indexing the broader location of commuting zone c difers between the studies 
of Acemoglu and Restrepo (2020) from Autor and Dorn (2013). The former study identifes 
the efects via variation across commuting zones within US Census divisions, which is indexed 

in equation (10) with a d, rather than variation across commuting zones within states, which 

is indexed with an s. Each of the variables in equation (10) are defned above. The variables 
in Xcd,t−1 difer from those in equations (7) and (8). In particular, we hold constant the 
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full set of control variables from Acemoglu and Restrepo (2020), which includes US Census 
division dummies (i.e., ϕd), the natural logarithm of the population, the unemployment rate, 
the shares of the population who are female, Asian, Black, Hispanic, White, over age 65, did 

not go to college, completed some college, graduated with a college degree or professional 
degree, completed a master’s or doctorate degree, and employed in manufacturing in general 
as well as light manufacturing, and the share of females employed in manufacturing relative 

to total manufacturing employment. Each of these variables are measured in 1990, as in 

Acemoglu and Restrepo (2020). The “China Shock” and the SSDI processing time controls 
are held constant and are defned in Section 4.2. 

We augment equation (10) and estimate stacked-diferences specifcations analogous 
to those described in Section 4.2. In particular, we add the variable D(t ,t ) to equationsi ei 

0 1 

(10) and compute the stacked-diferences estimates analogous to those described in equation 

(8) but with the right-hand-side variables shown in equation (10) held constant. When 

estimating the stacked-diferences specifcations, the 1990 version of the control variables 
held constant in equation (10) are linked to the frst stack (either 2005-2010 or 2004-2007) 
and their 2000 versions are linked to the second stack (either 2010-2019 or 2013-2016). 

We study the relationship between exposure to industrial robots via OLS and IV 

estimation. The same concerns of bias apply to robot exposure as applied to estimating the 

efects of the employment-share variables. As a result, we follow Acemoglu and Restrepo 

(2020) and Gihleb et al. (2022) and employ an IV estimation strategy that leverages the fact 
that European countries began adopting autonomous robots in production prior to their use 

in production throughout the US. 

The instrument employed when using the robot-exposure measure from Gihleb et al. 
(2022) is defned as 

I MEU X 
RobotExpIV,GGSW = i,t0 . (11)cd,t0 

li,cd,1970 
EEU 

i,1990i=1 

The variable li,cd,1970 is the share of workers employed in commuting zone cd in 1970; Mi,t
EU 

0 
is 

the operation stock of autonomous industrial robots in industry i at time t0 in nine European 

countries, which includes France, Denmark, Finland, Italy, Germany, Norway, Spain, Sweden, 
and the United Kingdom; and EEU is employment in industry i across the aforementioned i,1990 

European countries in 1990. When estimating the stacked-diferences specifcations, Mi,t
EU 

0 

is altered to Mi,t , which links the 2005 value to the starting period of the frst diferencesi 
0 

(2005-2010) and the 2010 value to the starting period of the second diference (2010-2019). 
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When applying the measure from Acemoglu and Restrepo (2020), our instrument 
again relies on the previously described European countries. The measure is defned iden-
tically to the measure for the US, but for the 1994-2004 period. Formally, the instrument 
is 

IX 
IV,ARRobotExp = · AP REU 
c,(1994,2004) li,c,1990 i,(1994,2004), (12) 

i=1 

When estimating the stacked-diferences specifcations, the instrument defned in equation 
si ei(12) is included along with its interaction with D(t ,t ). 0 1 

5 Results 

We present the fndings from our econometric analysis in two subsections. The frst focuses 
on the automation-related employment shares (i.e.,routine, repetition, and automation), and 

industrial robot exposure is the subject of the second subsection. 

5.1 Automation-Related Employment Shares and SSDI Applications 

In Table 3, we present OLS and 2SLS estimates for the relationship between the three 

automation-related employment share measures and the change in the SSDI application-to-
population ratio over the 2005-2019 period. The table includes eight columns, with the odd-
numbered columns containing the OLS estimates and the even-numbered columns showing 

the 2SLS estimates. The table is separated into three panels, each of which focuses on a 

particular employment-share variable. The estimates for the 18–64 age group are shown in 

columns 1 and 2, the 18–34 age group in columns 3 and 4, the 35–54 age group in columns 
5 and 6, and the 55–64 age groups in columns 7 and 8. In the fnal row of the table, we 

provide the unconditional average of the dependent variable employed in each specifcation. 

From the table, we fnd little evidence of statistically signifcant relationships between 

the employment-share variables and the SSDI outcomes when using OLS estimation. In 

fact, we only fnd statistically signifcant efects for 35–54 age groups in Panels A and B. 
However, when estimating the parameters of interest with 2SLS, we fnd robust evidence of 
a statistically signifcant relationship between the employment-share variables and the SSDI 
outcomes, particularly for 35–54 and 55–64 age groups. In absolute value, the coefcients 
estimated via 2SLS are roughly twice as large as those estimated via OLS. The instrument 
is relevant in the frst-stage regression, which is supported by the statistical signifcance of 
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the coefcient on the instrument as well as the relatively large KP F -statistics. 

In terms of interpretation, we use the standard deviations of employment-share vari-
ables to evaluate the magnitude of the efects shown in Table 3. For each employment-
share measure, the standard deviation is approximately three. From column 2 in Panel A, 
the −0.0069 coefcient when multiplied by three becomes approximately −0.021. Thus, a 

standard-deviation increase in the routine-intensive employment share corresponds to ap-
proximately a −0.021 percentage-point reduction in the application-to-population ratio for 
the 18–64 age group. Given that the the application-to-population ratio fell by 0.083 per-
centage points over the 2005-2019 period, the 0.021 percentage-point reduction implied by 

the point estimate suggests that about 25 percent of the observed decline in the application-
to-population ratio for 18- to 64-year-olds could be explained by increases in the routine-
intensive employment share. The point estimate for the automation-intensive employment 
share is even larger (column 2, Panel C). The coefcient estimate when multiplied by 3 

becomes −0.046, which explains 52 percent of the decline in the application-to-population 

ratio. The other point estimates in Table 3 can be evaluated by multiplying the coefcient 
estimate by 3 and then dividing by the unconditional change in the application-to-population 

ratio between 2005 and 2019 for each age group. 

In Table 4, we repeat the analysis shown in Table 3 separately for males (odd-
numbered columns) and females (even-numbered columns). OLS and 2SLS estimates are 

presented for each age group (columns 1 and 2, 3 and 4, 5 and 6, and 7 and 8) and 

employment-share measure (Panels A, B, and C). Again, we fnd that 2SLS estimates are 

considerably larger than those produced when using OLS estimation. The estimates for 
males and females are, in large part, consistent with each other. One deviation is for the 

55–64 age group. We fnd strong evidence of a negative efect of each employment-share 

variable among females, but fnd no evidence of a statistical link when focusing on the male 

application-to-population ratio. 

In Table 5, we present stacked-diference estimates. The table layout is identical to 

that used in Table 3. Using the stacked-diference specifcations, we tend to fnd statistically 

signifcant efects using both OLS and 2SLS. The only exception is the 18–34 age group for 
whom we fnd limited evidence of a statistically signifcant link between the automation-
related employment shares and the SSDI outcomes. Similar to the results in Table 3, the 

2SLS estimates are at least twice as large as those based on OLS estimation. For the most 
part, the stacked-diference estimates are consistent with those based on the long-diferences 
specifcations. Using the standard deviation of the employment-share variables (≈ 3) 
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Table 6 examines separately the efects of the employment-share variables on males 
and females using the stacked-diferences estimation strategy. Although there are exception, 
the OLS estimates tend to be statistically insignifcant in the majority of cases, but 2SLS 

estimates are, for the most part, statistically signifcant. Relative to the long-diference 

estimates (See Table 4), the stacked-diferences estimates suggest that the 35–54 age group 

is driving the aggregate estimates in columns 1 and 2, as we fnd little evidence of a statistical 
relationship for the 18–34 age group and relatively small efects for the 55–64 age group. 

5.2 Exposure to Industrial Robots and SSDI Applications 

We now examine how a specifc technology that tends to be purely labor saving afects SSDI 
outcomes. In Table 7, we present overall estimates for each age group using the measure 

proposed by Gihleb et al. (2022). The table is organized into two panels: Panel A presents 
the long-diferences estimates, and Panel B presents the stacked-diference estimates. OLS 

and 2SLS estimates are presented in each column, and the columns give estimates for males 
(odd numbered) and females (even numbered) in particular age groups: columns 1 and 2 

(18–64), columns 3 and 4 (18–34), columns 5 and 6 (35–54), and columns 7 and 8 (55–64). 
We note the similarities in the coefcient estimates between the sexes as well as the stability 

of the estimates when using OLS and 2SLS estimation. In general, the long- and stacked-
diferences estimates are consistent with each other, but the stacked-diferences estimates 
tend to be smaller than those estimated via the long-diferences specifcations. 

Using a one-unit change for evaluating the coefcient estimates is problematic due 

to the uncommonness of values of 1 or more in the data. Therefore, we, again, use the 

variables’ standard deviations to assess the efect sizes, which are around 0.33 for the long-
diferences specifcations and 0.72 for the stacked-diferences specifcations. When we use the 

values to evaluate the coefcients, for example, in column 1 from Table 7, we fnd similarly 

sized efects. For example, multiplying the −0.0355 coefcient (the 2SLS estimate in Panel 
A) by 0.33 yields a −0.0112 percentage-point change in the application-to-population ratio. 
Likewise, the product of 0.72 and the −0.0138 coefcient (the 2SLS estimate in Panel B) is 
a −0.0099 percentage-point change in the SSDI outcome. These estimates imply that–when 

compared relative to the sample mean for the dependent variable (last row in Table 7), 
a standard-deviation increase in robots per 1000 workers explains about 12 percent of the 

decline in the SSDI application-to-population ratio between 2005 and 2019. 

We repeat the analysis from Table 7 separately for males and females in Table 8. 
The estimates for males and females within each age group are similar when estimating via 

OLS and 2SLS. The OLS and 2SLS estimates, likewise, are similar and statistically diferent 
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from zero at conventional levels. One discrepancy between the long- and stacked-diferences 
estimates is the statistically signifcant negative efects shown in Panel A and null efects 
shown in Panel B. 

Lastly, in Table 9, we use the robot-exposure measure advanced by Acemoglu and Re-
strepo (2020). The table presents estimates for males and females combined (Panel A), males 
only (Panel B), and females only (Panel C). In columns 1-4, we present the long-diferences 
estimates, and columns 5–8 show the stacked-diference estimates. The vast majority of the 

estimated coefcients presented in Table 9 are statistically diferent from zero at conventional 
levels. We rely on the standard deviations of the robot-exposure measures to interpret the 

magnitudes of the efects. For the long-diferences estimates, the standard deviation of the 

robot-exposure measure is 1.75, and it is 1.00 for the stacked-diferences specifcations. Thus, 
if we multiply the the −0.0058 coefcient in column 1 (2SLS estimate from Panel A) by 1.75, 
the estimates imply a reduction in the application-to-population −0.01 percentage points. 
The implied impact is smaller for the stacked-diferences specifcations, as the point estimate 

(i.e.,the 2SLS estimate from column 5 from Panel A)–after multiplying by 1–is about half 
the size of the long-diferences estimates. Thus, the robot-exposure measure captures about 
12 percent of the observed decline in the overall SSDI application-to-population ratio when 

using the long-diferences estimates and about 6 percent when using the stacked-diferences 
specifcation. 

6 Discussion 

While the literature focuses more on the negative efects of automation on lower-skilled-
workers labor market outcomes, this paper indicates a robust, negative efect of automation 

on SSDI claiming. Insofar as SSDI claiming rates proxy for the health of the workforce, our 
results are congruent with much of the literature on automation and worker health. Although 

further inquiry into the mechanisms underpinning the negative efect on SSDI applications 
is needed, it appears that the replacement of more dangerous and injury-prone tasks with 

machine labor (e.g., see Gihleb et al., 2022) has dominated the negative psychological ef-
fects of job destruction (e.g., see O’Brien et al., 2022). More research on diferent worker 
populations (e.g., race/ethnicity) is warranted to better identify the relationship between 

automation-type-technologies and workers’ health outcomes.12 

12Further analysis of SSDI claiming rates for racial/ethnic sub-populations may require aggregation to 
larger geographic areas, as many commuting zone observations by race were censored due to privacy concerns. 

https://outcomes.12
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7 Conclusion 

We study the efects of both broad and narrow measures of automation technology on disabil-
ity claiming in the United States. We fnd that the broader measure of automation, which 

uses employment shares of routine tasks, is negatively related to SSDI claiming. However, 
the negative relationship is not as robust as we fnd when we examine the efect of industrial 
robot penetration on SSDI applications. Automation accounts for about a third of the drop 

in SSDI application-to-population ratio. 

There are several obstacles to establishing a credible causal relationship between au-
tomation and SSDI claiming. First, omitted-variable bias is a concern. Automation technol-
ogy is likely correlated with unobserved variables that also afect SSDI applications. Second, 
our measures of automation are imperfect, as we follow the literature and project national 
industry and occupational statistics related to automation onto regional labor markets called 

commuting zones. Third, the passage of time is required, as the efect of any automation 

technology requires time to spread through the economy. Lastly, the combination of the frst 
three estimation issues could be compounded by large movements in aggregate economic 

activity, such as the Great Recession, which is in the middle of our sample period.13 

We attempt to address each of these concerns. With respect to timing issues, we 

use long- and stacked-diferences models to both allow automation time to difuse through 

the labor market and minimize the impact of short-run disruptions in aggregate economic 

activity on estimates. To identify the causal relationship between automation and SSDI 
claiming, we implement a shift-share-type estimation strategy (Goldsmith-Pinkham et al., 
2020; Borusyak et al., 2022). This strategy is similar to that of prominent studies in the 

economics automation literature, primarily the work of Autor and Dorn (2013) and Acemoglu 

and Restrepo (2020). Recent research on technological change, within a task framework of 
production (e.g., see Acemoglu et al., 2024), shows that automation shifts tasks away from 

certain groups of workers, which also afects the wage distribution. The confuence of these 

two labor-market changes makes it more difcult to identify a specifc mechanism that would 

afect SSDI claiming–that is, does automation afect SSDI by replacing dangerous tasks 
and/or by changing the wage structure? By using two measures of automation, one broad 

and one specifc to industrial robots, we hoped to gain insight into the underlying mechanisms 
driving the reduction in SSDI claiming. In future research, we plan to investigate the extent 
to which automation has replaced human labor in more dangerous and/or physical tasks 
versus the destruction of jobs that might incentivize SSDI applications. 

13We do not consider the COVID-19 period in our data. 

https://period.13
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Tables 

Table 1: Top 10 Detailed Occupations for the 
Automation-Related Employment Shares 

Routine-Intensive Repetition-Intensive Automation-Intensive 

Ranking (1) (2) (3) 

#1 Bookkeeping, Accounting, and Audit- Bookkeeping, Accounting, and Audit- Extruding, Forming, Pressing, and 
ing Clerks ing Clerks Compacting Machine Setters, Opera-

tors, and Tenders 

#2 Insurance Claims and Policy Processing Gambling Cage Workers Travel Agents 
Clerks 

#3 Eligibility Interviewers, Government Radiation Therapists Library Technicians 
Programs 

#4 Medical Records Specialists Reservation and Transportation Ticket Insurance Claims and Policy Processing 
Agents and Travel Clerks Clerks 

#5 Health Information Technologists and Eligibility Interviewers, Government Accountants and Auditors 
Medical Registrars Programs 

#6 Tire Builders Payroll and Timekeeping Clerks Budget Analysts 

#7 Loan Interviewers and Clerks Brokerage Clerks Sawing Machine Setters, Operators, 
and Tenders, Wood 

#8 Budget Analysts Tax Preparers Bookkeeping, Accounting, and Audit-
ing Clerks 

#9 Atmospheric and Space Scientists Tellers Financial and Investment Analysis 

#10 Library Technicians Pharmacists Financial Risk Specialists 

Notes: The table presents the top 10 occupations for the routine-, repetition-, and automation-intensive employment shares generally 
defned in equation (2). 
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Table 2: Summary Statistics for SSDI Applications by Age Group 

Standard Deviation 

Average 

(1) 

Overall 
(2) 

Between 

(3) 

Within 

(4) 

Panel A: Males and Females 

18-64 Year Olds 
18-34 Year Olds 
35-54 Year Olds 
55-64 Year Olds 

0.6098 
0.1035 
0.2988 
0.1971 

0.2089 
0.0424 
0.1227 
0.0594 

0.1921 
0.0395 
0.1118 
0.0565 

0.0837 
0.0215 
0.0551 
0.0273 

Panel B: Males 

18-64 Year Olds 
18-34 Year Olds 
35-54 Year Olds 
55-64 Year Olds 

0.3229 
0.0523 
0.1531 
0.1106 

0.1158 
0.0233 
0.0663 
0.0343 

0.1038 
0.0214 
0.0581 
0.0313 

0.0530 
0.0130 
0.0333 
0.0168 

Panel C: Females 

18-64 Year Olds 
18-34 Year Olds 
35-54 Year Olds 
55-64 Year Olds 

0.3003 
0.0538 
0.1521 
0.0885 

0.0992 
0.0212 
0.0591 
0.0275 

0.0931 
0.0205 
0.0547 
0.0254 

0.0373 
0.0105 
0.0256 
0.0138 

Notes: The table presents sample means, standard deviations, and the within and between 
components of the standard deviations for the four dependent variables. The sample sizes vary 
in Panel A: 9,755 observations for the 18-64 year olds; 9,846 observations for the 18-34 year 
olds; 10,685 observations for the 35-54 year olds; and 10,586 observations for 55-64 year olds. 
The sample sizes vary across the age groups due to the suppression of data from commuting 
zones with application counts below the threshold for external presentation determined by 
SSA’s Disclosure Review Board. 
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Table 3: Routine, Repetition, and Automation Intensive Employment Shares 
and the SSDI Application-to-Population Ratio: OLS and 2SLS Estimates, 

Long Diferences, 2005-2019 

Age Group 

18-64 18-34 35-54 55-64 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

(1) (2) (3) (4) (5) (6) (7) (8) 

RSHc,2005 

First Stage Coef. 
KP F -Statistic 

−0.0018 
(0.0013) 

– 
– 

−0.0069∗∗∗ 

(0.0026) 

0.6016∗∗∗ 

65.1875 

Panel A: Routine-Intensive Employment Share 

0.0004 0.0008 −0.0021∗∗ 

(0.0004) (0.0007) (0.0009) 

– 0.6016∗∗∗ – 
– 65.2252 – 

−0.0055∗∗∗ 

(0.0018) 

0.6062∗∗∗ 

67.0934 

−0.0001 
(0.0004) 

– 
– 

−0.0020∗∗∗ 

(0.0008) 

0.6069∗∗∗ 

66.9569 

RT SHc,2005 

First Stage Coef. 
KP F -Statistic 

−0.0009 
(0.0012) 

– 
– 

−0.0077∗∗∗ 

(0.0029) 

0.5432∗∗∗ 

76.3211 

Panel B: Repetition-Intensive Employment Share 

0.0006 0.0009 −0.0020∗∗ 

(0.0004) (0.0008) (0.0009) 

– 0.5432∗∗∗ – 
– 76.3632 – 

−0.0061∗∗∗ 

(0.0020) 

0.5459∗∗∗ 

79.6606 

0.0005 
(0.0004) 

– 
– 

−0.0023∗∗∗ 

(0.0008) 

0.5464∗∗∗ 

79.3729 

ASHc,2005 

First Stage Coef. 
KP F -Statistic 

−0.0017 
(0.0015) 

– 
– 

−0.0142∗∗∗ 

(0.0052) 

0.2938∗∗∗ 

45.4623 

Panel C: Automation-Intensive Employment Share 

0.0002 0.0016 −0.0012 
(0.0004) (0.0016) (0.0009) 

– 0.2938∗∗∗ – 
– 45.4796 – 

−0.0116∗∗∗ 

(0.0039) 

0.2853∗∗∗ 

45.7129 

−0.0006 
(0.0005) 

– 
– 

−0.0044∗∗∗ 

(0.0015) 

0.2847∗∗∗ 

44.8765 

N 
∗ 

Appsc,(2005,2019) 

623 
−0.0826 

623 
−0.0826 

626 
−0.0038 

626 
−0.0038 

687 
−0.0931 

687 
−0.0931 

679 
0.0151 

679 
0.0151 

Notes: The table presents OLS and 2SLS long-diferences estimates based on equation (7). For each age group, we present the OLS and 2SLS estimates side-by-side separately for 18-64, 18-34, 35-54, and 55-64 year-olds. For 
the specifcations estimated via 2SLS, we report the coefcient on the instrument (defned in equation 9) and the Kleibergen-Paap Wald rk F -statistic. The sample sizes, N , vary across the age groups due to the suppression 
of data from commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each specifcation includes the control variables held constant in Autor 
and Dorn (2013)’s study, which include the college-to-noncollege population, the ratio of immigrants to the noncollege population, the share of workers employed in manufacturing, the unemployment rate, the share of the 
population who is female and employed, the share of the population 65 or older, and the share of noncollege workers workers earning a real wage below the minimum wage that will prevail over the next decade (2000-2010). 
Each of these variables is measured in 2000. We also hold constant the “China Shock” from (Autor et al., 2013), which is measured as the change in Chinese import exposure between 1990 and 2007 and the SSDI processing 
efciency measure from Kearney et al. (2021) for the year 2003. We report standard errors clustered at the state level in parentheses. , , and ∗∗∗ indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. ∗ ∗∗ 
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Table 4: Routine, Repetition, and Automation Intensive Employment Shares 
and Per-capita SSDI Applications: Males and Females Separately, 

OLS and 2SLS Estimates, Long Diferences, 2005-2019 

Age Group 

18-64 18-34 35-54 55-64 

Male Female Male Female Male Female Male Female 

(1) (2) (3) (4) (5) (6) (7) (8) 

OLS −0.0010 
(0.0008) 

−0.0007 
(0.0007) 

Panel A: Routine-Intensive Employment Share 

0.0003∗ 0.0001 −0.0013∗∗ 

(0.0002) (0.0002) (0.0006) 
−0.0008∗∗ 

(0.0004) 
−0.0001 
(0.0002) 

−0.0001 
(0.0003) 

2SLS 

First Stage Coef. 
KP F -Statistic 

−0.0030∗∗ 

(0.0014) 
0.6015∗∗∗ 

63.3168 

−0.0039∗∗∗ 

(0.0015) 
0.6015∗∗∗ 

63.3168 

0.0005 
(0.0004) 
0.6016∗∗∗ 

63.3654 

0.0002 
(0.0005) 
0.6016∗∗∗ 

63.3654 

−0.0029∗∗∗ 

(0.0010) 
0.6030∗∗∗ 

65.5689 

−0.0026∗∗∗ 

(0.0009) 
0.6030∗∗∗ 

65.5689 

−0.0005 
(0.0004) 
0.6014∗∗∗ 

65.5885 

−0.0016∗∗∗ 

(0.0005) 
0.6014∗∗∗ 

65.5885 

OLS −0.0006 
(0.0008) 

−0.0002 
(0.0007) 

Panel B: Repetition-Intensive Employment Share 

0.0004∗∗ 0.0002 −0.0013∗∗ 

(0.0002) (0.0003) (0.0006) 
−0.0007∗ 

(0.0004) 
0.0003 
(0.0002) 

0.0002 
(0.0002) 

2SLS 

First Stage Coef. 
KP F -Statistic 

−0.0033∗∗ 

(0.0016) 
0.5417∗∗∗ 

73.1754 

−0.0043∗∗∗ 

(0.0016) 
0.5417∗∗∗ 

73.1754 

0.0005 
(0.0004) 
0.5418∗∗∗ 

73.2304 

0.0003 
(0.0005) 
0.5418∗∗∗ 

73.2304 

−0.0033∗∗∗ 

(0.0011) 
0.5442∗∗∗ 

77.2897 

−0.0029∗∗∗ 

(0.0010) 
0.5442∗∗∗ 

77.2897 

−0.0006 
(0.0004) 
0.5431∗∗∗ 

77.1331 

−0.0017∗∗∗ 

(0.0006) 
0.5431∗∗∗ 

77.1331 

OLS −0.0003 
(0.0008) 

−0.0014∗ 

(0.0008) 

Panel C: Automation-Intensive Employment Share 

0.0002 −0.0001 −0.0005 
(0.0002) (0.0002) (0.0005) 

−0.0007 
(0.0005) 

0.0000 
(0.0003) 

−0.0006∗∗ 

(0.0003) 

2SLS 

First Stage Coef. 
KP F -Statistic 

−0.0060∗∗ 

(0.0029) 
0.3014∗∗∗ 

45.6387 

−0.0078∗∗∗ 

(0.0026) 
0.3014∗∗∗ 

45.6387 

0.0010 
(0.0009) 
0.3014∗∗∗ 

45.6574 

0.0005 
(0.0009) 
0.3014∗∗∗ 

45.6574 

−0.0061∗∗∗ 

(0.0023) 
0.2903∗∗∗ 

45.5121 

−0.0054∗∗∗ 

(0.0017) 
0.2903∗∗∗ 

45.5121 

−0.0011 
(0.0008) 
0.2918∗∗∗ 

46.9524 

−0.0032∗∗∗ 

(0.0009) 
0.2918∗∗∗ 

46.9524 

N 
Apps∗ 

s,c,(2005,2019) 

559 
−0.0664 

559 
−0.0029 

562 
−0.0593 

562 
−0.0012 

639 
−0.0207 

639 
−0.0016 

621 
−0.0353 

621 
0.0175 

Notes: The table presents OLS and 2SLS long-diferences estimates based on equation (7) separately for males (odd-numbered columns) and females (even-numbered columns). The sample sizes, N , 
vary across the age groups due to the suppression of data from commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. 
Each specifcation includes the control variables held constant in Autor and Dorn (2013)’s study, which include the college-to-noncollege population, the ratio of immigrants to the noncollege population, 
the share of workers employed in manufacturing, the unemployment rate, the share of the population who is female and employed, the share of the population 65 or older, and the share of noncollege 
workers workers earning a real wage below the minimum wage that will prevail over the next decade (2000-2010). Each of these variables is measured in 2000. We also hold constant the “China Shock” 
from (Autor et al., 2013), which is measured as the change in Chinese import exposure between 1990 and 2007 and the SSDI processing efciency measure from Kearney et al. (2021) for the year 2003. 
We report standard errors clustered at the state level in parentheses. , , and ∗∗∗ indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. ∗ ∗∗ 
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Table 5: Routine, Repetition, and Automation Intensive Employment Shares 
and Per-capita SSDI Applications: OLS and 2SLS Estimates, 

Stacked Diferences, 2005-2010 and 2010-2019 

Age Group 

18-64 18-34 35-54 55-64 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: Routine-Intensive Employment Share 

RSHc,2005 −0.0035∗∗ −0.0083∗ −0.0002 −0.0011 −0.0026∗∗ −0.0055∗∗ −0.0008∗∗ −0.0017∗∗ 

(0.0016) (0.0044) (0.0004) (0.0010) (0.0010) (0.0028) (0.0004) (0.0008) 
First Stage Estimates 
Main Efect Coef. – 0.5804∗∗∗ – 0.5804∗∗∗ – 0.5845∗∗∗ – 0.5840∗∗∗ 

Coef. on Interaction Term – −0.1124∗∗ – −0.1124∗∗ – −0.1094∗∗ – −0.1093∗∗ 

KP F -Statistic – 21.9941 – 21.9968 – 22.5637 – 22.4685 

Panel B: Repetition-Intensive Employment Share 

RT SHc,2005 −0.0041∗∗ −0.0099∗ −0.0004 −0.0021∗ −0.0030∗∗∗ −0.0062∗ −0.0008∗∗ −0.0016∗ 

(0.0016) (0.0052) (0.0004) (0.0013) (0.0010) (0.0032) (0.0004) (0.0009) 
First Stage Estimates 
Main Efect Coef. – 0.5424∗∗∗ – 0.5424∗∗∗ – 0.5453∗∗∗ – 0.5449∗∗∗ 

Coef. on Interaction Term – −0.1812∗∗∗ – −0.1812∗∗∗ – −0.1770∗∗∗ – −0.1771∗∗∗ 

KP F -Statistic – 30.5157 – 30.5187 – 31.6373 – 31.4715 

Panel C: Automation-Intensive Employment Share 

ASHc,2005 0.0003 −0.0153∗∗ 0.0004 0.0003 0.0007 −0.0120∗∗ −0.0008∗ −0.0043∗∗∗ 

(0.0015) (0.0076) (0.0004) (0.0017) (0.0009) (0.0053) (0.0005) (0.0015) 
First Stage Estimates 
Main Efect Coef. – 0.2343∗∗∗ – 0.2343∗∗∗ – 0.2295∗∗∗ – 0.2304∗∗∗ 

Coef. on Interaction Term – 0.0181 – 0.0181 – 0.0174 – 0.0171 
KP F -Statistic – 15.1533 – 15.1554 – 14.8478 – 14.9314 

N 1,266 1,266 1,268 1,268 1,388 1,388 1,361 1,361 
Apps∗ 

c,(2005,2019) −0.0826 −0.0826 −0.0038 −0.0038 −0.0931 −0.0931 0.0151 0.0151 

Notes: The table presents OLS and 2SLS stacked-diferences estimates based on equation (8). For each age grouping, we present the OLS and 2SLS estimates side-by-side separately for 18-64, 18-34, 35-54, 
and 55-64 year-olds. For the specifcations estimated via 2SLS, we report the coefcient on the instrument (defned in equation 9) and the Kleibergen-Paap Wald rk F -statistic. The sample sizes, N , vary 
across the age groups due to the suppression of data from commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each 
specifcation includes the control variables held constant in Autor and Dorn (2013)’s study, which include the college-to-noncollege population, the ratio of immigrants to the noncollege population, the 
share of workers employed in manufacturing, the unemployment rate, the share of the population who is female and employed, the share of the population 65 or older, and the share of noncollege workers 
workers earning a real wage below the minimum wage that will prevail over the next decade. We link the 1990 version of each of these variables to the starting year of the frst diference in the stack (i.e. 
2005), and the 2000 version of these variables is linked to the starting period of the second diference in the stack (i.e. 2010). For the share of workers earning below the minimum wage that will prevail in 
the decade, the relevant decade for the starting period of the frst diference is 1990-2000 and the decade relevant to the starting period of the second diference is 2000-2010. We hold constant the “China 
Shock” from (Autor et al., 2013), which is measured as the change in Chinese import exposure between two points in time. We link the change between 1990 and 2000 to the starting period of the frst 
diference and the change between 2000 and 2007 to the starting year of the second diference. We report standard errors clustered at the state level in parentheses. Lastly, we hold constant the SSDI 
processing efciency measure. The 2003 value is linked to the frst diference in the stack, and the 2008 value is linked to the second diference in the stack. , , and ∗∗∗ indicate statistical signifcance at∗ ∗∗ 

the 10, 5 and 1 percent levels, respectively. 
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Table 6: Routine, Repetition, and Automation Intensive Employment Shares 
and Per-capita SSDI Applications: Males and Females Separately, 

OLS and 2SLS Estimates, Stacked Diferences, 2005-2010 and 2010-2019 

Age Group 

18-64 18-34 35-54 55-64 

Male Female Male Female Male Female Male Female 

(1) (2) (3) (4) (5) (6) (7) (8) 

OLS −0.0025∗∗ 

(0.0010) 
−0.0010 
(0.0007) 

Panel A: Routine-Intensive Employment Share 

−0.0002 −0.0000 −0.0017∗∗∗ 

(0.0002) (0.0002) (0.0006) 
−0.0009∗∗ 

(0.0004) 
−0.0006∗∗ 

(0.0003) 
−0.0002 
(0.0002) 

2SLS 

First Stage Estimates 
Main Efect Coef. 
Coef. on Interaction Term 
KP F -Statistic 

−0.0051∗ 

(0.0026) 

0.5765∗∗∗ 

−0.1125∗∗ 

21.1402 

−0.0032∗ 

(0.0019) 

0.5765∗∗∗ 

−0.1125∗∗ 

21.1402 

−0.0008 
(0.0006) 

0.5765∗∗∗ 

−0.1125∗∗ 

21.1437 

−0.0004 
(0.0005) 

0.5765∗∗∗ 

−0.1125∗∗ 

21.1437 

−0.0032∗∗ 

(0.0016) 

0.5817∗∗∗ 

−0.1116∗∗ 

22.1461 

−0.0023∗ 

(0.0012) 

0.5817∗∗∗ 

−0.1116∗∗ 

22.1461 

−0.0011∗∗ 

(0.0005) 

0.5795∗∗∗ 

−0.1100∗∗ 

22.0142 

−0.0006∗ 

(0.0003) 

0.5795∗∗∗ 

−0.1100∗∗ 

22.0142 

OLS −0.0031∗∗∗ 

(0.0009) 
−0.0009 
(0.0007) 

Panel B: Repetition-Intensive Employment Share 

−0.0003 −0.0000 −0.0020∗∗∗ 

(0.0002) (0.0002) (0.0006) 
−0.0009∗∗ 

(0.0004) 
−0.0008∗∗∗ 

(0.0002) 
−0.0000 
(0.0002) 

2SLS 

First Stage Estimates 
Main Efect Coef. 
Coef. on Interaction Term 
KP F -Statistic 

−0.0069∗∗ 

(0.0032) 

0.5384∗∗∗ 

−0.1818∗∗∗ 

29.2231 

−0.0033 
(0.0022) 

0.5384∗∗∗ 

−0.1818∗∗∗ 

29.2231 

−0.0016∗∗ 

(0.0008) 

0.5384∗∗∗ 

−0.1818∗∗∗ 

29.2270 

−0.0007 
(0.0006) 

0.5384∗∗∗ 

−0.1818∗∗∗ 

29.2270 

−0.0037∗∗ 

(0.0018) 

0.5433∗∗∗ 

−0.1799∗∗∗ 

30.8400 

−0.0024∗ 

(0.0014) 

0.5433∗∗∗ 

−0.1799∗∗∗ 

30.8400 

−0.0014∗∗ 

(0.0007) 

0.5417∗∗∗ 

−0.1788∗∗∗ 

30.7101 

−0.0002 
(0.0004) 

0.5417∗∗∗ 

−0.1788∗∗∗ 

30.7101 

OLS 0.0002 
(0.0010) 

0.0001 
(0.0006) 

Panel C: Automation-Intensive Employment Share 

0.0002 0.0002 0.0003 
(0.0002) (0.0002) (0.0006) 

0.0003 
(0.0004) 

−0.0003 
(0.0003) 

−0.0005∗∗ 

(0.0002) 

2SLS 

First Stage Estimates 
Main Efect Coef. 
Coef. on Interaction Term 
KP F -Statistic 

−0.0070 
(0.0044) 

0.2420∗∗∗ 

0.0167 
14.8690 

−0.0074∗∗ 

(0.0032) 

0.2420∗∗∗ 

0.0167 
14.8690 

0.0004 
(0.0009) 

0.2420∗∗∗ 

0.0167 
14.8708 

−0.0001 
(0.0008) 

0.2420∗∗∗ 

0.0167 
14.8708 

−0.0063∗∗ 

(0.0031) 

0.2312∗∗∗ 

0.0189 
14.9907 

−0.0053∗∗ 

(0.0022) 

0.2312∗∗∗ 

0.0189 
14.9907 

−0.0017∗ 

(0.0010) 

0.2343∗∗∗ 

0.0164 
15.1521 

−0.0025∗∗∗ 

(0.0007) 

0.2343∗∗∗ 

0.0164 
15.1521 

N 
Apps∗ 

s,c,(2005,2019) 

1,137 
−0.0664 

1,137 
−0.0029 

1,139 
−0.0593 

1,139 
−0.0012 

1,301 
−0.0207 

1,301 
−0.0016 

1,256 
−0.0353 

1,256 
0.0175 

Notes: The table presents OLS and 2SLS stacked-diferences estimates based on equation (8) separately for males (odd-numbered columns) and females (even-numbered columns). For the 2SLS estimates, we report 
the coefcient on the instrument (defned in equation 9), its interaction with the diference-period indicator (see equation (7), and the Kleibergen-Paap Wald rk F -statistic. The sample sizes, N , vary across the 
age groups due to the suppression of data from commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each specifcation includes 
the control variables held constant in Autor and Dorn (2013)’s study, which include the college-to-noncollege population, the ratio of immigrants to the noncollege population, the share of workers employed in 
manufacturing, the unemployment rate, the share of the population who is female and employed, the share of the population 65 or older, and the share of noncollege workers workers earning a real wage below the 
minimum wage that will prevail over the next decade. We link the 1990 version of each of these variables to the starting year of the frst diference in the stack (i.e. 2005), and the 2000 version of these variables is 
linked to the starting period of the second diference in the stack (i.e. 2010). For the share of workers earning below the minimum wage that will prevail in the decade, the relevant decade for the starting period of 
the frst diference is 1990-2000 and the decade relevant to the starting period of the second diference is 2000-2010. We hold constant the “China Shock” from (Autor et al., 2013), which is measured as the change 
in Chinese import exposure between two points in time. We link the change between 1990 and 2000 to the starting period of the frst diference and the change between 2000 and 2007 to the starting year of the 
second diference. We report standard errors clustered at the state level in parentheses. Lastly, we hold constant the SSDI processing efciency measure. The 2003 value is linked to the frst diference in the stack, 
and the 2008 value is linked to the second diference in the stack. , , and ∗∗∗ indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. ∗ ∗∗ 
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Table 7: Exposure to Industrial Robots and Per-capita SSDI Applications: OLS and 2SLS 
Estimates, Long Diferences (2005-2019) and Stacked Diferences (2005-2010, 2010-2019) 

Age Group 

18-64 18-34 35-54 55-64 

(1) (2) (3) (4) 

Panel A: Long Diferences Estimates 

OLS −0.0389∗∗∗ −0.0085∗∗∗ −0.0215∗∗∗ −0.0089∗∗ 

(0.0080) (0.0016) (0.0040) (0.0038) 

2SLS −0.0355∗∗∗ −0.0066∗∗∗ −0.0224∗∗∗ −0.0065 
(0.0092) (0.0015) (0.0038) (0.0051) 

First Stage Estimates 
First Stage Coef. 0.1776∗∗∗ 0.1776∗∗∗ 0.1775∗∗∗ 0.1775∗∗∗ 

KP F -Statistic 1, 247.8025 1, 247.7057 1, 236.5783 1, 237.8741 

N 623 628 689 681 

Panel B: Stacked Diferences Estimates 

OLS −0.0169∗∗∗ −0.0005 −0.0122∗∗∗ −0.0042∗∗ 

(0.0034) (0.0010) (0.0020) (0.0019) 

2SLS −0.0138∗∗∗ 0.0010 −0.0109∗∗∗ −0.0039 
(0.0050) (0.0007) (0.0026) (0.0025) 

First Stage Estimates 
Main Efect 0.1626∗∗∗ 0.1626∗∗∗ 0.1625∗∗∗ 0.1626∗∗∗ 

Coef. on Interaction 0.2850∗∗∗ 0.2850∗∗∗ 0.2850∗∗∗ 0.2850∗∗∗ 

KP F -Statistic 4, 626.7748 4, 626.7956 4, 617.6992 4, 629.3804 

N 1,266 1,268 1,388 1,361 

Apps∗ −0.0826 −0.0038 −0.0931 0.0151 c,(2005,2019) 

Notes: The table presents OLS and 2SLS long-diferences estimates based on equation (10) in Panel A, and OLS and 2SLS stacked-diferences estimates 
based on equation (8 are presented in Panel B. For each age grouping, we present the OLS and 2SLS estimates side-by-side separately for 18-64, 18-34, 
35-54, and 55-64 year-olds. For the specifcations estimates via 2SLS, we report the coefcient on the instrument (defned in equation (11)) and the 
Kleibergen-Paap Wald rk F -statistic. The sample sizes, N , vary across the age groups due to the suppression of data from commuting zones with 
application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each specifcation includes the control 
variables held constant in Acemoglu and Restrepo (2020)’s study, which includes US Census division dummies (i.e. ϕd), the natural logarithm of the 
population, the “China Shock” from Autor et al. (2013), the shares of the population who are female, Asian, Black, Hispanic, White, over age 65, 
did not go to college, completed some college, graduated with a college degree or professional degree, completed a masters or doctorate degree, and 
employed in manufacturing in general as well as light manufacturing, and the share of females employed in manufacturing relative to total manufacturing 
employment. When estimating the long-diferences specifcations, the 1990 version of these variables is used. By contrast, when estimating the stacked-
diferences specifcations, we link the 1990 and 2000 versions of these variables to the frst and second periods in the stack, respectively. We also hold 
constant the “China Shock” from (Autor et al., 2013) and the SSDI processing efciency variable from Kearney et al. (2021). See the notes from Tables 
3 and 5 for details on the Chinese import penetration and SSDI processing efciency controls. We account for these variables in the same way that 
we do when estimating the models focused on the employment-share automation measures. We report standard errors clustered at the state level in 

∗ ∗∗ ∗∗∗parentheses. , , and indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. 
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Table 8: Exposure to Industrial Robots and Per-capita SSDI Applications: 
Males and Females Separately, OLS and 2SLS Estimates, Long Diferences (2005-2019) and 

Stacked Diferences (2005-2010, 2010-2019) 

Age Group 

18-64 18-34 35-54 55-64 

Male Female Male Female Male Female Male Female 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: Long Diferences Estimates 

OLS −0.0213∗∗∗ 

(0.0059) 
−0.0180∗∗∗ 

(0.0032) 
−0.0044∗∗∗ 

(0.0010) 
−0.0044∗∗∗ 

(0.0009) 
−0.0118∗∗∗ 

(0.0027) 
−0.0098∗∗∗ 

(0.0018) 
−0.0049∗ 

(0.0028) 
−0.0040∗∗∗ 

(0.0013) 

2SLS 

First Stage Estimates 
First Stage Coef. 
KP F -Statistic 

−0.0213∗∗∗ 

(0.0063) 

0.1776∗∗∗ 

1, 243.1879 

−0.0146∗∗∗ 

(0.0035) 

0.1776∗∗∗ 

1, 243.1879 

−0.0039∗∗∗ 

(0.0011) 

0.1776∗∗∗ 

1, 243.1220 

−0.0029∗∗∗ 

(0.0007) 

0.1776∗∗∗ 

1, 243.1220 

−0.0134∗∗∗ 

(0.0023) 

0.1776∗∗∗ 

1, 245.8722 

−0.0093∗∗∗ 

(0.0019) 

0.1776∗∗∗ 

1, 245.8722 

−0.0037 
(0.0036) 

0.1776∗∗∗ 

1, 244.1930 

−0.0027 
(0.0017) 

0.1776∗∗∗ 

1, 244.1930 

N 561 561 564 564 641 641 623 623 

Panel B: Stacked Diferences Estimates 

OLS −0.0085∗∗∗ 

(0.0023) 
−0.0082∗∗∗ 

(0.0013) 
0.0001 
(0.0005) 

−0.0006 
(0.0006) 

−0.0065∗∗∗ 

(0.0012) 
−0.0057∗∗∗ 

(0.0008) 
−0.0023∗ 

(0.0012) 
−0.0019∗∗ 

(0.0008) 

2SLS 

First Stage Estimates 
Main Efect 
Coef. on Interaction 
KP F -Statistic 

−0.0068∗∗ 

(0.0033) 

0.1625∗∗∗ 

0.2851∗∗∗ 

4, 634.0076 

−0.0067∗∗∗ 

(0.0019) 

0.1625∗∗∗ 

0.2851∗∗∗ 

4, 634.0076 

0.0009∗ 

(0.0005) 

0.1625∗∗∗ 

0.2851∗∗∗ 

4, 634.0831 

0.0002 
(0.0004) 

0.1625∗∗∗ 

0.2851∗∗∗ 

4, 634.0831 

−0.0059∗∗∗ 

(0.0016) 

0.1626∗∗∗ 

0.2850∗∗∗ 

4, 633.5938 

−0.0050∗∗∗ 

(0.0011) 

0.1626∗∗∗ 

0.2850∗∗∗ 

4, 633.5938 

−0.0020 
(0.0016) 

0.1626∗∗∗ 

0.2850∗∗∗ 

4, 624.9458 

−0.0019∗ 

(0.0010) 

0.1626∗∗∗ 

0.2850∗∗∗ 

4, 624.9458 

N 
Apps∗ 

s,c,(2005,2019) 

1,137 
−0.0664 

1,137 
−0.0029 

1,139 
−0.0593 

1,139 
−0.0012 

1,301 
−0.0207 

1,301 
−0.0016 

1,256 
−0.0353 

1,256 
0.0175 

Notes: Separately for males (odd-numbered columns) and females (even-numbered columns), the table presents OLS and 2SLS long-diferences estimates based on equation (10) in Panel A, 
and OLS and 2SLS stacked-diferences estimates described in Section 4.3 in Panel B. For each age grouping, we present the OLS and 2SLS estimates side-by-side separately for 18-64, 18-34, 
35-54, and 55-64 year-olds. For the specifcations estimated via 2SLS, we report the coefcient on the instrument (defned in equation (11) and the Kleibergen-Paap Wald rk F -statistic in 
Panel A and also report the coefcient on the interaction efect between the instrument and the diference-period indicator variable. he sample sizes, N , vary across the age groups due to the 
suppression of data from commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each specifcation includes 
the control variables held constant in Acemoglu and Restrepo (2020)’s study, which includes US Census division dummies (i.e. ϕd), the natural logarithm of the population, the “China 
Shock” from Autor et al. (2013), the shares of the population who are female, Asian, Black, Hispanic, White, over age 65, did not go to college, completed some college, graduated with a 
college degree or professional degree, completed a masters or doctorate degree, and employed in manufacturing in general as well as light manufacturing, and the share of females employed 
in manufacturing relative to total manufacturing employment. When estimating the long-diferences specifcations, the 1990 version of these variables is used. By contrast, when estimating 
the stacked-diferences specifcations, we link the 1990 and 2000 versions of these variables to the frst and second periods in the stack, respectively. We also hold constant the “China Shock” 
from (Autor et al., 2013) and the SSDI processing efciency variable from Kearney et al. (2021). See the notes from Tables 3 and 5 for details on the Chinese import penetration and SSDI 
processing efciency controls. We account for these variables in the same way that we do when estimating the models focused on the employment-share automation measures. We report 
standard errors clustered at the state level in parentheses. , , and ∗∗∗ indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. ∗ ∗∗ 
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Table 9: Exposure to Industrial Robots and Per-capita SSDI Applications, 
OLS and 2SLS Estimates, Long Diferences (2004-2016) and Stacked Diferences (2004-2007, 

2013-2016) 

Long Diferences, 2004-2016 
Stacked Diferences, 

2004-2007 and 2013-2016 

18-64 18-34 35-54 55-64 18-64 18-34 35-54 55-64 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: Males and Females 

OLS −0.0051∗∗∗ 

(0.0017) 
−0.0015∗∗∗ 

(0.0005) 
−0.0020∗∗ 

(0.0009) 
−0.0016∗∗ 

(0.0006) 
−0.0045∗∗∗ 

(0.0013) 
−0.0008∗∗∗ 

(0.0003) 
−0.0023∗∗∗ 

(0.0007) 
−0.0013∗ 

(0.0007) 

2SLS 

First Stage Coef. 
Coef. on Interaction 
KP F -Statistic 

−0.0058∗∗∗ 

(0.0016) 

1.3422∗∗∗ 

– 
2, 293.2306 

−0.0014∗∗∗ 

(0.0005) 

1.3422∗∗∗ 

– 
2, 293.7997 

−0.0027∗∗∗ 

(0.0008) 

1.3431∗∗∗ 

– 
2, 329.0867 

−0.0016∗∗∗ 

(0.0006) 

1.3429∗∗∗ 

– 
2, 323.7103 

−0.0046∗∗∗ 

(0.0015) 

0.6476∗∗∗ 

0.0974∗∗∗ 

4, 271.1866 

−0.0006∗∗ 

(0.0003) 

0.6476∗∗∗ 

0.0974∗∗∗ 

4, 271.8920 

−0.0022∗∗∗ 

(0.0008) 

0.6481∗∗∗ 

0.0974∗∗∗ 

4, 351.5636 

−0.0017∗∗∗ 

(0.0006) 

0.6480∗∗∗ 

0.0974∗∗∗ 

4, 318.4567 

N 625 627 692 685 1,246 1,248 1,381 1,362 

Panel B: Males 

OLS −0.0030∗∗∗ 

(0.0011) 
−0.0010∗∗∗ 

(0.0002) 
−0.0011∗ 

(0.0006) 
−0.0008∗ 

(0.0004) 
−0.0014 
(0.0010) 

−0.0003∗ 

(0.0002) 
−0.0012∗∗ 

(0.0005) 
0.0000 
(0.0005) 

2SLS 

First Stage Coef. 
Coef. on Interaction 
KP F -Statistic 

−0.0037∗∗∗ 

(0.0009) 

1.3408∗∗∗ 

– 
2, 240.2580 

−0.0011∗∗∗ 

(0.0002) 

1.3408∗∗∗ 

– 
2, 240.9812 

−0.0016∗∗∗ 

(0.0005) 

1.3427∗∗∗ 

– 
2, 306.9613 

−0.0009∗∗ 

(0.0004) 

1.3423∗∗∗ 

– 
2, 295.4873 

−0.0016 
(0.0010) 

0.6472∗∗∗ 

0.0967∗∗∗ 

4, 217.8029 

−0.0003∗ 

(0.0001) 

0.6472∗∗∗ 

0.0967∗∗∗ 

4, 218.6427 

−0.0012∗∗ 

(0.0005) 

0.6479∗∗∗ 

0.0975∗∗∗ 

4, 292.4579 

−0.0002 
(0.0005) 

0.6477∗∗∗ 

0.0973∗∗∗ 

4, 258.9084 

N 557 559 644 630 1,119 1,121 1,293 1,254 

Panel C: Females 

OLS −0.0022∗∗∗ 

(0.0007) 
−0.0005∗ 

(0.0003) 
−0.0009∗∗ 

(0.0004) 
−0.0008∗∗∗ 

(0.0002) 
−0.0029∗∗∗ 

(0.0005) 
−0.0005∗∗ 

(0.0002) 
−0.0011∗∗∗ 

(0.0003) 
−0.0013∗∗∗ 

(0.0003) 

2SLS 

First Stage Coef. 
Coef. on Interaction 
KP F -Statistic 

−0.0022∗∗∗ 

(0.0007) 

1.3408∗∗∗ 

– 
2, 240.2580 

−0.0003 
(0.0003) 

1.3408∗∗∗ 

– 
2, 240.9812 

−0.0011∗∗∗ 

(0.0004) 

1.3427∗∗∗ 

– 
2, 306.9613 

−0.0008∗∗∗ 

(0.0002) 

1.3423∗∗∗ 

– 
2, 295.4873 

−0.0029∗∗∗ 

(0.0006) 

0.6472∗∗∗ 

0.0967∗∗∗ 

4, 217.8029 

−0.0003∗ 

(0.0002) 

0.6472∗∗∗ 

0.0967∗∗∗ 

4, 218.6427 

−0.0010∗∗ 

(0.0004) 

0.6479∗∗∗ 

0.0975∗∗∗ 

4, 292.4579 

−0.0016∗∗∗ 

(0.0002) 

0.6477∗∗∗ 

0.0973∗∗∗ 

4, 258.9084 

N 557 559 644 630 1,119 1,121 1,293 1,254 

Notes: The table presents OLS and 2SLS long-diferences estimates based on equation (10) in columns 1-4, and OLS and 2SLS stacked-diferences estimates described in Section 
4.3 are presented in columns 5-8. Estimates are presented for males and females combined in Panel A; males only in Panel B; and females only in Panel C. For the specifcations 
estimated via 2SLS, we report the coefcient on the instrument (defned in equation (12) and the Kleibergen-Paap Wald rk F -statistic in Panel A and also report the coefcient 
on the interaction efect between the instrument and the diference-period indicator variable. he sample sizes, N , vary across the age groups due to the suppression of data from 
commuting zones with application counts below the threshold for external presentation determined by SSA’s Disclosure Review Board. Each specifcation includes the control variables 
held constant in Acemoglu and Restrepo (2020)’s study, which includes US Census division dummies (i.e. ϕd), the natural logarithm of the population, the “China Shock” from 
Autor et al. (2013), the shares of the population who are female, Asian, Black, Hispanic, White, over age 65, did not go to college, completed some college, graduated with a college 
degree or professional degree, completed a masters or doctorate degree, and employed in manufacturing in general as well as light manufacturing, and the share of females employed 
in manufacturing relative to total manufacturing employment. When estimating the long-diferences specifcations, the 1990 version of these variables is used. By contrast, when 
estimating the stacked-diferences specifcations, we link the 1990 and 2000 versions of these variables to the frst and second periods in the stack, respectively. We also hold constant 
the “China Shock” from (Autor et al., 2013) and the SSDI processing efciency variable from Kearney et al. (2021). See the notes from Tables 3 and 5 for details on the Chinese 
import penetration and SSDI processing efciency controls. We account for these variables in the same way that we do when estimating the models focused on the employment-share 
automation measures. We report standard errors clustered at the state level in parentheses. , , and ∗∗∗ indicate statistical signifcance at the 10, 5 and 1 percent levels, respectively. ∗ ∗∗ 
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Figures 

Figure 1: SSDI Application-to-Population Ratio, 2005-2019 

Notes: For the 2005-2019 period, the fgure plots predicted values from a regression of SSDI application-to-population ratio, as 
defned in equation 1, in the commuting zone on a constant, year dummies, and state dummies. The regression estimates are 
weighted by the commuting zone’s share of the US population in 2000. The year-by-year estimates are presented separately 
in Panels A (males and females combined), B (males only), and C (females only) for the 18–64, 18–34, 35–54, and 55–64 age 
groups. 



Automation and SSDI Applications Page 37 

Figure 2: Geographic Variation in Population-Adjusted SSDI Applications, 18–64 Year 
Olds 

Notes: For 18–64 year-olds, the fgure presents heat maps of the SSDI application-to-population ratio, as defned in equation 
1, in 2005 (Panel A) as well as its change between 2005 and 2019 (Panel B). In Panel A, lighter red colors indicate a lower 
application-to-population ratios, and darker red colors indicate a greater prevalence of per-capita applications. Commuting 
zones for which insufcient applications were submitted to allow for external presentation are shown in gray. In Panel B, we use 
a diverging color scheme, in which light to dark blue indicate positive changes in application rates, and yellow to red indicate 
negative changes in application rates. The positive changes are greater when the color is a darker blue. Likewise, negative 
changes are greater when the color is a darker red. 
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Figure 3: Geographic Variation in Population-Adjusted SSDI Applications, 18–34 Year 
Olds 

Notes: For 18–34 year-olds, the fgure presents heat maps of the SSDI application-to-population ratio, as defned in equation 
1, in 2005 (Panel A) as well as its change between 2005 and 2019 (Panel B). In Panel A, lighter red colors indicate a lower 
application-to-population ratios, and darker red colors indicate a greater prevalence of per-capita applications. Commuting 
zones for which insufcient applications were submitted to allow for external presentation are shown in gray. In Panel B, we use 
a diverging color scheme, in which light to dark blue indicate positive changes in application rates, and yellow to red indicate 
negative changes in application rates. The positive changes are greater when the color is a darker blue. Likewise, negative 
changes are greater when the color is a darker red. 
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Figure 4: Geographic Variation in Population-Adjusted SSDI Applications, 35–54 Year 
Olds 

Notes: For 35–54 year-olds, the fgure presents heat maps of the SSDI application-to-population ratio, as defned in equation 
1, in 2005 (Panel A) as well as its change between 2005 and 2019 (Panel B). In Panel A, lighter red colors indicate a lower 
application-to-population ratios, and darker red colors indicate a greater prevalence of per-capita applications. Commuting 
zones for which insufcient applications were submitted to allow for external presentation are shown in gray. In Panel B, we use 
a diverging color scheme, in which light to dark blue indicate positive changes in application rates, and yellow to red indicate 
negative changes in application rates. The positive changes are greater when the color is a darker blue. Likewise, negative 
changes are greater when the color is a darker red. 
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Figure 5: Geographic Variation in Population-Adjusted SSDI Applications, 55–64 Year 
Olds 

Notes: For 55–64 year-olds, the fgure presents heat maps of the SSDI application-to-population ratio, as defned in equation 
1, in 2005 (Panel A) as well as its change between 2005 and 2019 (Panel B). In Panel A, lighter red colors indicate a lower 
application-to-population ratios, and darker red colors indicate a greater prevalence of per-capita applications. Commuting 
zones for which insufcient applications were submitted to allow for external presentation are shown in gray. In Panel B, we use 
a diverging color scheme, in which light to dark blue indicate positive changes in application rates, and yellow to red indicate 
negative changes in application rates. The positive changes are greater when the color is a darker blue. Likewise, negative 
changes are greater when the color is a darker red. 
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Figure 6: Geographic Variation in the Routine, Repetition, and Automation Intensive 
Employment Shares 

Notes: The fgure presents heat maps for the automation measures described in Section 3.2.1 for 2005 (Panels A, C, and E) as 
well as the changes in the measures between 2005 and 2010 (Panels B, D, and F). Panels A and B focus on the routine-intensive 
employment share; Panels C and D on the repetition-intensive employment share; and Panels E and F on the automation-
intensive employment share. 
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Figure 7: Geographic Variation in Exposure to Industrial Robots 

Notes: The fgure presents heat maps for the automation measures described in Section 3.2.2 for 2005 (Panel A) as well as the 
changes in the measure between 2005 and 2010 (Panel B). 
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